Baryon form factors in a Contact Interaction approach to QCD.

David Wilson

13th March 2012

Twin Approaches to Confinement Physics, Thomas Jefferson National Accelerator Facility.

Work in collaboration with A. Bashir, I. C. Clöet, L. Chang and C.D. Roberts.

• • = • • = • =

Strongly-coupled QCD and Hadron Physics

Connecting theory and experiment

$$\begin{split} \mathcal{L}_{\text{QCD}} &= \bar{\psi}^{\alpha} \left(i \not\!\!D_{\alpha b} - m \right) \psi^{b} \\ &- \frac{1}{4} F^{\alpha}_{\mu \nu} F^{\mu \nu}_{\alpha} - \frac{1}{2\xi} \left(\partial_{\mu} A^{\mu}_{\alpha} \right)^{2} \\ &+ \left(\partial^{\mu} \bar{c}_{\alpha} \right) D^{\alpha b}_{\mu} c_{b} \end{split}$$

π, K, σ η, a₁, ...
n, p, N^{$$\frac{1}{2}^+$$}(1440),
N ^{12^-} (1535), Δ, ...
Masses, form factors ...

- 김씨 김 씨 김 씨 김 씨 문에는

Strongly-coupled QCD and Hadron Physics Connecting theory and experiment

$$\begin{split} \mathcal{L}_{\text{QCD}} &= \bar{\psi}^{\alpha} \left(i \not{D}_{\alpha b} - m \right) \psi^{b} \\ &- \frac{1}{4} F^{\alpha}_{\mu \nu} F^{\mu \nu}_{a} - \frac{1}{2\xi} \left(\partial_{\mu} A^{\mu}_{a} \right)^{2} \\ &+ \left(\partial^{\mu} \bar{c}_{a} \right) D^{ab}_{\mu} c_{b} \end{split}$$

$$π$$
, K, σ η, a₁, ...
n, p, N ^{$\frac{1}{2}^+$} (1440),
N ^{12^-} (1535), Δ, ...
Masses, form factors ...

- Confinement
- Dynamical chiral symmetry breaking

Roper resonance

- First observed in 1964.
- $N(1440)P_{11}$, $J^P = 1/2^+$.
- Same spin and parity as the proton.
- \bullet Has a lower mass than $N(1535)S_{11}\text{, }J^P=1/2^-$ resonance
- proton-Roper EM form factors are experimentally measurable.
- At JLab, proton-Roper transition form factors have recently been obtained, Phys. Rev. C79, 065206 (2009), C80, 055203 (2009).
- We aim to provide a theoretical calculation in a symmetry preserving framework closely connected to QCD.

● ▲ ■ ▲ ■ ■ ■ ■ ● ▲ ■

n, p, N*

Outline

- We use a contact interaction treatment of the gluon interaction in the QCD Schwinger-Dyson equations.
- \rightarrow Simple to use; generally applicable.
- $\rightarrow\,$ Good approximation at small $\,q^2,$ especially for ground states.
 - We can calculate nucleon, excited state and transition form factors.
 - Simple to generalise to any reasonably low-lying hadron.

Different interactions

Non-perturbative effects of full QCD:

Contact interactions have had phenomenological success however they neglect this running, $m_q = \text{constant}$. A reasonable approximation for small q^2 .

Long term goals:

- Calculate and compare a full QCD treatment with running masses and SDE dressings to simpler interactions.
- $\rightarrow\,$ Identify the experimental signatures of full QCD.

SDE and Bound State solutions from a contact interaction

 The effective gluon mass in the IR from motivates a truncation: Replace full gluon propagator,

$$\begin{split} \mathcal{D}_{\mu\nu}(\mathbf{p}) &= \Delta_{G\ell}(\mathbf{p}) \left(g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} \right) \\ &\to g_{eff} \frac{g_{\mu\nu}}{m_g^2}. \end{split}$$

- \rightarrow Momentum independent.
 - In practical terms:
 - $\rightarrow\,$ Simplifies or removes loop integrations.
 - $\rightarrow\,$ Simplifies tensor contractions.
 - $\rightarrow\,$ Like all good approximations, it makes many hard problems solvable.
 - All mass functions constant:
 - \rightarrow It is useful to investigate the implications of this.
 - \rightarrow It can be a starting point for a more advanced treatment.

Nucleon Diquark Model

(See also talk of G. Eichmann)

- Strong evidence that diquark correlations are strong within the nucleon.
- More advanced treatments find good agreement using this model for low-lying states.
- Three body forces certainly exist but are subdominant.

 $\rightarrow\,$ We neglect 3-body forces at this level.

Diquarks

- Mesons and diquarks are obtained from very similar Bethe-Salpeter equations.
- Each meson has diquark partner.
- Non-pointlike: finite radial extent, comparable to mesons.

Meson	Diquark
π	$(qq)^{0^+}$
ρ	$(qq)^{1^+}$
σ	$(qq)^{0^{-}}$
a_1	$(qq)^{1^{-}}$

In order to build a positive parity nucleon we use the positive parity diquarks that are related to the ρ and π .

For the $N(\frac{1}{2}^{-})$ states the diquarks related to the σ and α_1 are the required contributions.

Model features:

- No dynamical gluons: Nucleon is represented as a three quark state.
- Two of the quarks assumed to be bound into a diquark correlation.
- Relevant diquarks are the 0⁺ and 1⁺ (qq) configurations.
- $\rightarrow\,$ Need positive parity diquarks for a positive parity nucleon.
- $\rightarrow\,$ These are simply related to the π and ρ mesons.

Diquarks:

- Already studied in this model using their Bethe-Salpeter equations.
- $\rightarrow~m_{0^+}=0.78~GeV$
- $\rightarrow \ m_{1^+} = 1.06 \ \text{GeV}$
 - Radii are comparable to their mesonic partners.
 - Their EM form factors are required and have been obtained using this model.

Meson and Diquark form factors

Eg. π form factor:

Solid curve: This model. Dotted curve: Full theory.

- General feature of this model that form factors are too hard.
- This is due to the lack of running of the interaction and the mass functions.

Faddeev equation Baryon masses

Masses are higher than experiment:

No pion cloud effect is accounted for in this model.

Coupling to hadronic decay channels is expected to reduce the masses.

Diagrams to calculate

- Just two diquarks in the simplest model:
- 1. 0⁺ (diquark partner of π)
- 2. 1⁺ (diquark partner of ρ meson)
 - Photon may hit quark or diquark (4 diagrams).
 - Photon may induce a diquark transition for certain quark configurations (2 diagrams).
- $\rightarrow\,$ 6 diagrams to calculate. First: scalar diagrams....

Scalar part only

Bethe-Salpeter Amplitude:

$$\begin{split} \Lambda^{s\,q}_{\mu} &= s^2 \Lambda_+(p') \int \frac{d^4 \ell}{(2\pi)^4} \, \left(S(\ell+p') \Gamma^{\perp}_{\mu}(q) S(\ell+p) \Delta(-\ell) \right) \Lambda_+(p) \\ \Lambda^{s\,d}_{\mu} &= s^2 \Lambda_+(p') \int \frac{d^4 \ell}{(2\pi)^4} \, \left(\Delta(k_2) \Gamma^{0^+}_{\mu}(q) \Delta(k_1) S(\ell) \right) \Lambda_+(p) \end{split}$$

Scalar part only

Bethe-Salpeter Amplitude:

$$\begin{split} \Lambda^{s\,q}_{\mu} &= \int \frac{d^4\ell}{(2\pi)^4} \; s^2 \Lambda_+(p^{\,\prime}) \Big(S(\ell+p^{\,\prime}) \Gamma^{\perp}_{\mu}(q) S(\ell+p) \Delta(-\ell) \Big) \Lambda_+(p) \\ \Lambda^{s\,d}_{\mu} &= \int \frac{d^4\ell}{(2\pi)^4} \; s^2 \Lambda_+(p^{\,\prime}) \Big(\Delta(k_2) \Gamma^{0^+}_{\mu}(q) \Delta(k_1) S(\ell) \Big) \Lambda_+(p) \end{split}$$

- Just two diagrams when considering just the scalar diquark.
- Constant quark mass from solving contact gap eq., $M_q = 0.37$ GeV:

$$S(p)^{-1} = i\gamma.p + M_q$$

 \rightarrow Useful check: Ward Identity $\Lambda^{s\,q}_{\mu}(0)=\Lambda^{s\,d}_{\mu}(0)$

Extracting Form Factors

Elastic:

$$J_{\mu}(q) = ie\overline{u}(p') \left\{ \left(\gamma_{\mu} - \frac{\gamma \cdot q \, q_{\mu}}{q^2} \right) F_1(q^2) + \frac{iq^{\nu}\sigma_{\mu\nu}}{2m_N} F_2(q^2) \right\} u(p)$$

Simply related to the Sachs form factors:

$$\begin{split} G_{E}^{N}(q^{2}) &= F_{1}^{N}(q^{2}) - \frac{q^{2}}{4m_{N}^{2}}F_{2}^{N}(q^{2}) \\ G_{M}^{N}(q^{2}) &= F_{1}^{N}(q^{2}) + F_{2}^{N}(q^{2}) \end{split}$$

Transition form factor just a simple generalisation:

$$J_{\mu}^{*}(q) = ie\overline{u}_{R}(p') \left\{ \left(\gamma_{\mu} - \frac{\gamma \cdot q q_{\mu}}{q^{2}} \right) F_{1}^{*}(q^{2}) + \frac{iq^{\nu}\sigma_{\mu\nu}}{m_{N} + m_{R}} F_{2}^{*}(q^{2}) \right\} u_{N}(p)$$

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

Scalar-only ground state form factors

Dirac-Pauli

Sachs

Including the axial component

- 2 additional diagrams similar to the scalar only system.
- Additionally have a scalar-axial diquark transition diagram (also axial-scalar transition)
- Relative strength of components comes from Faddeev solution.

Including the axial component

- 2 additional diagrams similar to the scalar only system.
- Additionally have a scalar-axial diquark transition diagram (also axial-scalar transition)
- Relative strength of components comes from Faddeev solution.

Components:

- Scalar diquark: [ud]u in proton, [ud]d in neutron
- Axial diquarks: {uu}d and [ud]u in proton, {dd}u and [ud]d in neutron.
- These come with different isospin and charge factors.

Ground state composition: (Scalar, Axial)=(0.88, 0.47)

Elastic Ground state form factors

Solid: This calculation, Dot-dashed: Curve Fitted to Experimental data. Black: F_1^p , Red: F_2^p , Green: F_1^n , Blue: F_2^n .

- Form factors are too hard \rightarrow more like a pointlike composite state.
- Magnetic moments are too small \rightarrow can be improved by using an extended quark-photon vertex.

David Wilson (Argonne)

Elastic Ground state form factors with AMM vertex

Solid: AMM vertex, Dotted: Previous result, Dot-dashed: Curve Fitted to Experimental data. Black: F_1^p , Red: F_2^p , Green: F_1^n , Blue: F_2^n .

Ground state form factor term-by-term

 \rightarrow All diagrams are important.

고나님

< 注入 < 注入

• $x = q^2/m_N^2$ - removes some of the pion cloud effect.

- F_{2p} also normalised to unity at x = 0.
- Reasonable representation at small x, but already a significant deviation for $x \sim 1$.

Solid: This calculation. Dashed: Clöet *et al* (w/ running dressing fns.) Dot-dashed: Experimental fit.

Ground state and Excited state comparison

- Using a simple Faddeev equation in the same contact interaction framework, we can insert a node into the integrand in order to produce an excited state.
- The excited state and ground state satisfy an orthogonality condition.

Faddeev solution components:

	Scalar	Axial γ_{μ}	Axial p_{μ}
Ν	0.88	-0.38	-0.07
N*	-0.44	-0.03	0.73

- Excited state mass: $m_{N^*} = 1.73$ GeV.
- $\bullet\,$ Orthogonality is very important and results in an overall zero at $q^2=0$ in the transition.
- Overall sign does not affect elastic form factors.
- Roper more axial than scalar; opposite to ground state.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

Excited state form factors - charged

- $x = p^2/m_B^2$
- F₁ very similar.
- $\kappa_{R,p} = 0.59$ in this calculation.
- It is likely this is too small in magnitude.

Transition form factors

Now: Roper \rightarrow nucleon EM transition:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Transition form factors

- Negative at small x due to orthogonality
- $\rightarrow\,$ Scalar diquark components have opposite signs.
 - F₂ zero is quite generic.
 - Related to the zero in the Roper's Faddeev amplitude.
- \rightarrow Typical of a radial excitation.

Diagram contributions

- There is a zero in each term so it is natural that a zero arises.
- Orthgonality makes the scalar diquark contribution negative at x = 0.

Solid: photon hits u-quark, scalar diquark spectator, Dashed: photon on scalar diquark, Dot-dashed: photon on axial vector diquark, Dotted: photon-quark with AV spectator.

Considering the meson cloud

Plotted using helicity amplitudes $S_{1/2}$, $A_{1/2}$.

Solid: this calculation Short dash: EBAC Dash-dot: CQM (Cardarelli et al, PLB397, 13 (1997)) Long dash: LFCQM

- (I. G. Aznauryan, PRC76, 025212 (2007))
 - Closest agreement with EBAC bare FF at small q².

Next steps: $N \rightarrow N^{\frac{1}{2}^{-}}(1535)$

- Requires EM elastic and transition diquark form factors for all possible combinations.
- Partners of: $a_1\gamma a_1$, $a_1\gamma \rho$, $a_1\gamma \pi$, $\sigma\gamma\sigma$, $\sigma\gamma\rho$, ...
- All are straightforwardly calculable in the contact interaction model framework, eg:

Transition calculation quite simple since it may only occur via a diquark transition diagram.

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

Conclusions

- Nucleon, Roper and Transition form factors have been calculated in a contact interaction model.
- Similar to other applications of this model, we find:
- \rightarrow Form factors typically harder than experiment or full QCD.
- \rightarrow F₂ form factors typically too small in magnitude.
- $\rightarrow\,$ This is well understood and due to effects of the quark-photon vertex and coupling to the virtual meson cloud.
- No calculation currently agrees with the data
- $\rightarrow\,$ They shouldn't because no calculation includes the meson cloud.
 - We essentially agree with EBAC's bare form factors.
 - Our work adds to growing body of evidence that it is the Bare Form Factors with which structure calculations should compare.
 - A calculation using a full interaction is certainly required, this will follow after a study of the 1/2⁻ parity partner using this interaction.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

Excited state form factors - neutral

- F₂ very similar in this case.
- F₁ exhibits a zero, possibly due to FF diagrams being too hard

$$\begin{aligned} \frac{1}{p^2 + M^2} &= \int_0^\infty d\tau \, e^{-\tau(p^2 + M^2)} \to \int_{\tau_{UV}}^{\tau_{IR}^2} d\tau \, e^{-\tau(p^2 + M^2)} \\ &= \frac{e^{-\tau_{UV}^2(p^2 + M^2)} - e^{-\tau_{IR}^2(p^2 + M^2)}}{p^2 + M^2} \end{aligned}$$

- τ parameters universal. Fixed by studies of meson masses and gap eq.
- Gives confinement.
- Regulates the UV divergences due to point-like interaction.

Use on-shell form factors

- Require form factor inputs for diquarks.
- Have only been calculated on-shell.
- Approximate form factor by on-shell contribution.
- Dominant part of integral should come from on-shell region.